732 research outputs found

    Airfoil self-noise and prediction

    Get PDF
    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given

    Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    Get PDF
    A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (>85%) and a calibration factor was developed based upon °-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33% of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20%). Inter-unit precision for the 14 OPC-N2 sensors of 22±13% for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined

    The impact of COVID-19 public health restrictions on particulate matter pollution measured by a validated low-cost sensor network in Oxford, UK

    Get PDF
    Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities with arising impacts upon urban air quality. To date, these air quality changes associated with lockdown measures have typically been assessed using limited city-level regulatory monitoring data, however, low-cost air quality sensors provide capabilities to assess changes across multiple locations at higher spatial-temporal resolution, thereby generating insights relevant for future air quality interventions. The aim of this study was to utilise high-spatial resolution air quality information utilising data arising from a validated (using a random forest field calibration) network of 15 low-cost air quality sensors within Oxford, UK to monitor the impacts of multiple COVID-19 public heath restrictions upon particulate matter concentrations (PM10, PM2.5) from January 2020 to September 2021. Measurements of PM10 and PM2.5 particle size fractions both within and between site locations are compared to a pre-pandemic related public health restrictions baseline. While average peak concentrations of PM10 and PM2.5 were reduced by 9–10 μg/m3 below typical peak levels experienced in recent years, mean daily PM10 and PM2.5 concentrations were only ∼1 μg/m3 lower and there was marked temporal (as restrictions were added and removed) and spatial variability (across the 15-sensor network) in these observations. Across the 15-sensor network we observed a small local impact from traffic related emission sources upon particle concentrations near traffic-oriented sensors with higher average and peak concentrations as well as greater dynamic range, compared to more intermediate and background orientated sensor locations. The greater dynamic range in concentrations is indicative of exposure to more variable emission sources, such as road transport emissions. Our findings highlight the great potential for low-cost sensor technology to identify highly localised changes in pollutant concentrations as a consequence of changes in behaviour (in this case influenced by COVID-19 restrictions), generating insights into non-traffic contributions to PM emissions in this setting. It is evident that additional non-traffic related measures would be required in Oxford to reduce the PM10 and levels to within WHO health-based guidelines and to achieve compliance with PM2.5 targets developed under the Environment Act 2021

    Impacts of ambient air quality on acute asthma hospital admissions during the COVID-19 pandemic in Oxford City, UK:a time-series study

    Get PDF
    OBJECTIVES: The study aims to investigate the short-term associations between exposure to ambient air pollution (nitrogen dioxide (NO2), particulate matter pollution-particles with diameter&lt;2.5 µm (PM2.5) and PM10) and incidence of asthma hospital admissions among adults, in Oxford, UK.DESIGN: Retrospective time-series study.SETTING: Oxford City (postcode areas OX1-OX4), UK.PARTICIPANTS: Adult population living within the postcode areas OX1-OX4 in Oxford, UK from 1 January 2015 to 31 December 2021.PRIMARY AND SECONDARY OUTCOME MEASURES: Hourly NO2, PM2.5 and PM10 concentrations and meteorological data for the period 1 January 2015 to 31 December 2020 were analysed and used as exposures. We used Poisson linear regression analysis to identify independent associations between air pollutant concentrations and asthma admissions rate among the adult study population, using both single (NO2, PM2.5, PM10) and multipollutant (NO2 and PM2.5, NO2 and PM10) models, where they adjustment for temperature and relative humidity.RESULTS: The overall 5-year average asthma admissions rate was 78 per 100 000 population during the study period. The annual average rate decreased to 46 per 100 000 population during 2020 (incidence rate ratio 0.58, 95% CI 0.42 to 0.81, p&lt;0.001) compared to the prepandemic years (2015-2019). In single-pollutant analysis, we observed a significantly increased risk of asthma admission associated with each 1 μg/m3 increase in monthly concentrations of NO2 4% (95% CI 1.009% to 1.072%), PM2.5 3% (95% CI 1.006% to 1.052%) and PM10 1.8% (95% CI 0.999% to 1.038%). However, in the multipollutant regression model, the effect of each individual pollutant was attenuated.CONCLUSIONS: Ambient NO2 and PM2.5 air pollution exposure increased the risk of asthma admissions in this urban setting. Improvements in air quality during COVID-19 lockdown periods may have contributed to a substantially reduced acute asthma disease burden. Large-scale measures to improve air quality have potential to protect vulnerable people living with chronic asthma in urban areas.</p

    Leg disorders in broiler chickens : prevalence, risk factors and prevention

    Get PDF
    Broiler (meat) chickens have been subjected to intense genetic selection. In the past 50 years, broiler growth rates have increased by over 300% (from 25 g per day to 100 g per day). There is growing societal concern that many broiler chickens have impaired locomotion or are even unable to walk. Here we present the results of a comprehensive survey of commercial flocks which quantifies the risk factors for poor locomotion in broiler chickens.We assessed the walking ability of 51,000 birds, representing 4.8 million birds within 176 flocks.We also obtained information on approximately 150 different management factors associated with each flock. At a mean age of 40 days, over 27.6% of birds in our study showed poor locomotion and 3.3% were almost unable to walk. The high prevalence of poor locomotion occurred despite culling policies designed to remove severely lame birds from flocks. We show that the primary risk factors associated with impaired locomotion and poor leg health are those specifically associated with rate of growth. Factors significantly associated with high gait score included the age of the bird (older birds), visit (second visit to same flock), bird genotype, not feeding whole wheat, a shorter dark period during the day, higher stocking density at the time of assessment, no use of antibiotic, and the use of intact feed pellets. The welfare implications are profound. Worldwide approximately 261010 broilers are reared within similar husbandry systems.We identify a range of management factors that could be altered to reduce leg health problems, but implementation of these changes would be likely to reduce growth rate and production. A debate on the sustainability of current practice in the production of this important food source is required

    Bayesian power-spectrum inference for Large Scale Structure data

    Full text link
    We describe an exact, flexible, and computationally efficient algorithm for a joint estimation of the large-scale structure and its power-spectrum, building on a Gibbs sampling framework and present its implementation ARES (Algorithm for REconstruction and Sampling). ARES is designed to reconstruct the 3D power-spectrum together with the underlying dark matter density field in a Bayesian framework, under the reasonable assumption that the long wavelength Fourier components are Gaussian distributed. As a result ARES does not only provide a single estimate but samples from the joint posterior of the power-spectrum and density field conditional on a set of observations. This enables us to calculate any desired statistical summary, in particular we are able to provide joint uncertainty estimates. We apply our method to mock catalogs, with highly structured observational masks and selection functions, in order to demonstrate its ability to reconstruct the power-spectrum from real data sets, while fully accounting for any mask induced mode coupling.Comment: 25 pages, 15 figure

    Effect of aerosol composition on the performance of low-cost optical particle counter correction factors

    Get PDF
    There is considerable interest in using low-cost optical particle counters (OPCs) to supplement existing routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data need to be comparable with particle mass reference instrumentation; however, there is currently no widely agreed upon methodology to accomplish this. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass concentrations derived from low-cost OPCs, particularly at high ambient relative humidity (RH). Correction factors have been developed that apply κ-Köhler theory to correct for the influence of water uptake by hygroscopic aerosols. We have used datasets of co-located reference particle measurements and low-cost OPC (OPC-N2, Alphasense) measurements, collected in four cities on three continents, to explore the performance of this correction factor. We provide evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference instrumentation, are due to bulk aerosol hygroscopicity under different RH conditions, which is determined by aerosol composition and, in particular, the levels of hygroscopic aerosols (sulfate and nitrate). We exploit measurements made in volcanic plumes in Nicaragua, which are predominantly composed of sulfate aerosol, as a natural experiment to demonstrate this behaviour in the ambient atmosphere; the observed humidogram from these measurements closely resembles the calculated pure sulfuric acid humidogram. The results indicate that the particle mass concentrations derived from low-cost OPCs during periods of high RH (&gt;60 %) need to be corrected for aerosol hygroscopic growth. We employed a correction factor based on κ-Köhler theory and observed that the corrected OPC-N2 PM2.5 mass concentrations were within 33 % of reference measurements at all sites. The results indicated that a κ value derived in situ (using suitable reference instrumentation) would lead to the most accurate correction relative to co-located reference instruments. Applying a κ values from the literature in the correction factor also resulted in improved OPC-N2 performance, with the measurements being within 50 % of the reference values. Therefore, for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a literature κ value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and low RH values, a simple calibration against gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low-cost PM sensors

    Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Get PDF
    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes

    Measurement of the Strong Coupling Constant from Inclusive Jet Production at the Tevatron pˉp\bar pp Collider

    Get PDF
    We report a measurement of the strong coupling constant, αs(MZ)\alpha_s(M_Z), extracted from inclusive jet production in ppˉp\bar{p} collisions at s=\sqrt{s}=1800 GeV. The QCD prediction for the evolution of αs\alpha_s with jet transverse energy ETE_T is tested over the range 40<ETE_T<450 GeV using ETE_T for the renormalization scale. The data show good agreement with QCD in the region below 250 GeV. In the text we discuss the data-theory comparison in the region from 250 to 450 GeV. The value of αs\alpha_s at the mass of the Z0Z^0 boson averaged over the range 40<ETE_T<250 GeV is found to be αs(MZ)=0.1178±0.0001(stat)0.0095+0.0081(exp.syst)\alpha_s(M_{Z})= 0.1178 \pm 0.0001{(\rm stat)}^{+0.0081}_{-0.0095}{\rm (exp. syst)}. The associated theoretical uncertainties are mainly due to the choice of renormalization scale (^{+6%}_{-4%}) and input parton distribution functions (5%).Comment: 7 pages, 3 figures, using RevTeX. Submitted to Physical Review Letter

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure
    corecore